---
title: "`r sprintf('plot.matrix v%s', packageVersion('plot.matrix'))`"
author:
- name: "Sigbert Klinke"
email: sigbert@hu-berlin.de
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
html_document:
toc: true
toc_depth: 4
vignette: >
%\VignetteIndexEntry{plot.matrix}
%\VignetteEngine{knitr::rmarkdown}
\usepackage[utf8]{inputenc}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
# General
The aim of the package `plot.matrix` is to visualize a matrix as is with a heatmap. Automatic reordering of rows and columns is only done if necessary. This is different as in similar function like ``heatmap``. Additionally it should be user-friendly and give access to a lot of options if necessary.
Currently the package implements the S3 functions below such that you can use the generic `plot` function to plot matrices as heatmaps:
* `plot.matrix` for a heatmap for a plain matrix,
* `plot.loadings` for a heatmap for a loadings matrix from factor analysis or principal component analysis (reordering of rows!).
The plot itself is composed by a heatmap (usually left) where colors represent matrix entries and a key (usually right) which links the colors to the values.
## First examples
```{r fig.height=4, fig.width=4}
library('plot.matrix')
# numeric matrix
x <- matrix(runif(35), ncol=5) # create a numeric matrix object
class(x)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(x)
# logical matrix
m <- matrix(runif(35)<0.5, ncol=7)
plot(m)
# text matrix
s <- matrix(sample(letters[1:10], 35, replace=TRUE), ncol=5)
plot(s)
```
```{r fig.height=5, fig.width=5}
library('plot.matrix')
library('psych')
data <- na.omit(bfi[,1:25])
fa <- fa(data, 5, rotate="varimax")
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(loadings(fa), cex=0.5)
```
## Assigning colors and breaks
`plot.matrix` uses the command `assignColors`, also part of `plot.matrix`, assigns
to each value in `x` a color based on the parameters `breaks`, `col` and `na.col` given.
In case of a numeric matrix `breaks` can be
* a number, giving the number of intervals covering the range of `x`,
* a vector of two numbers, given the range to cover with 10 intervals, or
* a vector with more than two numbers, specify the interval borders
In case of a non-numeric vector `breaks` must contain all values which are
will get a color.
If `breaks` is not given then a sensible default is chosen:
in case of a numeric vector derived from `pretty` and
otherwise all unique values/levels are used.
`col` can be either be a vector of colors or a function which generates
via `col(n)` a set of `n` colors. The default is to use `heat.colors`.
## Choosing color palettes/functions
In case that you want to provide your own color palettes/functions for plotting there are several good choices
within R packages:
Source: [Datanovia - Top R Color Palettes to Know for Great Data Visualization](https://www.datanovia.com/en/blog/top-r-color-palettes-to-know-for-great-data-visualization/)
* [`viridis`](https://CRAN.R-project.org/package=viridis) or [`viridisLite`](https://CRAN.R-project.org/package=viridisLite),
* [`RColorBrewer`](https://CRAN.R-project.org/package=RColorBrewer),
* [`ggplot2`](https://CRAN.R-project.org/package=ggplot2),
* [`ggsci`](https://CRAN.R-project.org/package=ggsci),
* [`wesanderson`](https://CRAN.R-project.org/package=wesanderson),
* [`cetcolor`](https://CRAN.R-project.org/package=cetcolor),
* [`colormap`](https://CRAN.R-project.org/package=colormap),
* [`ColorPalette`](https://CRAN.R-project.org/package=ColorPalette),
* [`colorr`](https://CRAN.R-project.org/package=colorr),
* [`colorRamps`](https://CRAN.R-project.org/package=colorRamps),
* [`dichromat`](https://CRAN.R-project.org/package=dichromat),
* [`jcolors`](https://CRAN.R-project.org/package=jcolors),
* [`morgenstemning`](https://CRAN.R-project.org/package=morgenstemning),
* [`painter`](https://CRAN.R-project.org/package=painter),
* [`paletteer`](https://CRAN.R-project.org/package=paletteer),
* [`pals`](https://CRAN.R-project.org/package=pals),
* [`Polychrome`](https://CRAN.R-project.org/package=Polychrome),
* [`qualpalr`](https://CRAN.R-project.org/package=qualpalr),
* [`randomcoloR`](https://CRAN.R-project.org/package=randomcoloR), or
* [`Redmonder`](https://CRAN.R-project.org/package=Redmonder).
## Structure of the plot
The plot is created in several steps
1. a call to the `plot` command to create the basic plot
2. draw colored polygons for each matrix entry with the `polygon` command
3. if necessary add the value of each matrix entry with the `text` command in a polygon
4. if necessary draw x- and y-axis with the `axis` command into the plot
5. if necessary draw the key with the `axis` and the `polygon` command
## Formal parameters
```{r echo=FALSE}
p <-formals(plot.matrix:::plot.matrix)
p$na.col <- paste0('"', p$na.col, '"')
out <- matrix('', nrow=length(p), ncol=4)
out[1,1] <- 'plot.matrix('
out[,2] <- names(p)
cp <- as.character(p)
ct <- (cp!='')
out[ct,3] <- '='
out[ct,4] <- cp[ct]
out[1:length(p),4] <- cp
out[1,2] <- paste0(out[1,2], ',')
out[2:(length(p)-1),4] <- paste0(out[2:(length(p)-1),4], ',')
out[length(p),2] <- paste0(out[length(p),2], ')')
#out <- cbind(out[,1], apply(out[,2:5], 1, function(e) paste0(e, collapse="")))
knitr::kable(out)
```
You may influence the appearance by setting your own parameters:
1. `...` all parameters given here will be given to the `plot` command, e.g. `xlab`, `ylab`, ....
2. `polygon.cell` list of parameters for drawing polygons for matrix entries
3. `text.cell` list of parameters for putting for matrix entries as texts
4. `axis.col` and `axis.row` list of parameters for drawing for row and column axes
5. `key`, `axis.key`, `spacing.key` and `polygon.key` to draw the key
6. `max.col` to determine when text color and background color to near
## Set global parameters
You may set global parameters for all subsequent calls of `axis`, `polygon` and `text` via the `...`. The following parameters are supported
function | parameter(s)
----------|----------------------------------------------------------------------
`axis` | `cex.axis`, `col.axis`, `col.ticks`, `font`, `font.axis`, `hadj`, `las`, `lwd.ticks`, `line` , `outer`, `padj`, `tck`, `tcl`, `tick`
`polygon` | `angle`, `border`, `density`
`text` | `cex`, `font`, `vfont`
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
# omit all borders
plot(x, border=NA)
```
# Frequently asked questions
## How can I delete the grid lines?
Use the parameter `border=NA`.
## How can I get squared boxes?
Use the parameter `asp=TRUE`.
## How can I rotate the axis labels such they do no overlap?
Use the parameter `las`, the style of axis labels, in `axis.col`and/or `axis.row` with
* `0` = always parallel to the axis [default],
* `1` = always horizontal,
* `2` = always perpendicular to the axis, and
* `3` = always vertical.
```{r fig.height=4, fig.width=4}
x <- matrix(runif(35), ncol=5) # create a numeric matrix object
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins such that all labels are visible
plot(x, axis.col=list(side=1, las=2), axis.row = list(side=2, las=1))
```
## How can I show a matrix of parameters and, for example, their standard errors below?
You need to access the position of the cell text used by accessing the invisible return of `plot.matrix`.
The `cell.text` contains the parameters used to draw the text.
__Note__ the double braces: `[[i,j]]`
```{r fig.height=4, fig.width=4}
param_est <- matrix(runif(25), nrow=5)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins such that all labels are visible
res <- plot(param_est, digits=2, text.cell=list(pos=3, cex=0.75))
sderr_est <- matrix(runif(25)/10, nrow=5)
for (i in 1:nrow(param_est)) {
for (j in 1:ncol(param_est)) {
args <- res$cell.text[[i,j]]
args$labels <- paste0('(', fmt(sderr_est[i,j], 3), ')')
args$cex <- 0.5
args$pos <- 1
do.call(text, args)
}
}
```
Or alternatively
```{r fig.height=4, fig.width=4}
param_est <- matrix(runif(25), nrow=5)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins such that all labels are visible
res <- plot(param_est, digits=2, text.cell=list(cex=0.75))
sderr_est <- matrix(runif(25)/10, nrow=5)
for (i in 1:nrow(param_est)) {
for (j in 1:ncol(param_est)) {
args <- res$cell.text[[i,j]]
args$labels <- paste0('(', round(sderr_est[i,j], 3), ')')
args$cex <- 0.6
args$y <- args$y-0.3
do.call(text, args)
}
}
```
## How can I use `plot.matrix` and the default scatter plot in parallel?
The example illustrates the problem: the loadings of the factor analysis should be plotted as matrix and the factor scores
as a scatter plot.
```{r, warning=FALSE}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins such that all labels are visible
library("plot.matrix")
library("psych")
fa <- fa(iris[,-5], 2)
plot(fa$loadings)
plot(fa$scores)
```
### Solution 1: Convert the matrix to a `data.frame`
```{r, warning=FALSE}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins such that all labels are visible
fa <- fa(iris[,-5], nfactor=2)
plot(fa$loadings)
plot(as.data.frame(fa$scores))
```
### Solution 2: Use `plot.default`
```{r, warning=FALSE}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins such that all labels are visible
fa <- fa(iris[,-5], nfactors=2)
plot(fa$loadings)
plot.default(fa$scores)
```
### Solution 3: Unload the package `plot.matrix` permanently
If do not want to use the package `plot.matrix` for further plotting then unload the package including the installed S3 functions with `devtools::unload`
```{r, warning=FALSE}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins such that all labels are visible
library("plot.matrix")
library("psych")
fa <- fa(iris[,-5], 2)
plot(fa$loadings)
devtools::unload('plot.matrix') # Package devtools must be installed!
plot(fa$scores)
```
```{r, include = FALSE}
library('plot.matrix')
```
# Modifying a plot
## Defaults
The default plot always draws a heatmap and a key where the colors and breaks are determined by the entries of `x`. In case of a numeric matrix ten colors from `heat.colors` are chosen and eleven breaks with cover the range of entries with an equidistant grid. In case of a non-numeric matrix each unique element gets a color determined from `heat.colors`.
## Modifying the breaks
In case of a numeric matrix the `breaks` give the interval borders for a color otherwise for each unique matrix entry `breaks` should contain a value. If `breaks` are not given then they will be determined from the matrix object by using the `pretty` function of base R.
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
# we only want the range of x
plot(x, breaks=range(x))
# we want seven colors
plot(x, breaks=7)
# user defined breaks, out-of-range entries are colored white
plot(x, breaks=c(0.3,0.5,0.8))
```
## Modifying the colors
### Cell colors
The `col` parameter is either a vector of colors used or a function `mycolor(n)` which returns `n` colors on request.
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
# use a color function
plot(x, col=topo.colors)
# user defined breaks and colors
plot(x, col=c('red', 'green'), breaks=c(0, 0.5, 1))
# non-numeric matrix
# assign colors
plot(m, col=c('red', 'green'))
# assign colors and breaks directly
plot(m, col=c('red', 'green'), breaks=c(TRUE, FALSE))
```
Note that for numeric matrices must hold `length(breaks)==length(col)+1` and for non-numeric matrices `length(breaks)==length(col)`.
### Missing values and out-of-range matrix entries
The parameter `na.col` determines the color for missing values and for matrix entries outside the current color scheme.
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
x[1,1] <- NA
plot(x, col=topo.colors)
plot(x, col=topo.colors, na.col="red")
plot(s, col=topo.colors, breaks=c('a', 'c', 'e', 'g', 'i'))
```
## Modifying the key
### Delete the key
For deleting the key set `key=NULL`:
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
# delete key
plot(x, key=NULL)
```
### Move the key
For moving the key to a different axis use `key` or `axis.key`. Note that only a warning is issued if the axes
for rows, columns or the key are at the same side.
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 5.1, 4.1)) # adapt margins
# move key to the top and make axis text smaller
plot(x, key=list(side=3, cex.axis=0.75), breaks=c(0,1))
```
The parameter `spacing.key` gives the spacing between plot and the key, the width of the key and the spacing between the key and the axis.
If you give a vector of length 1 or 2 then the missing values will be appended with the defaults `c(1, 0.5, 0)`
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 5.1, 4.1)) # adapt margins
# move key to the top, make axis text smaller, and move key farther away from the plot
plot(x, key=list(side=3, cex.axis=0.75), breaks=c(0,1), spacing.key=2)
```
For a very large matrix
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 5.1, 4.1)) # adapt margins
xl <- array(runif(1e4), c(1e2, 1e2))
brk <- 20
plot(xl, border=NA, breaks=brk, col=heat.colors(brk),
key=list(side=4, font=2, cex.axis=0.75), fmt.key="%.2f",
polygon.key=NULL, axis.key=NULL, spacing.key=c(3,2,2))
```
### Change the output format of the key labels
You can either use `digits` which changes the output format for all text. If you just want to change the output format for the key labels use `fmt.key`, e.g.
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
# no plus sign
plot(x, fmt.key="%.3f", breaks=c(0,1))
```
For details to the format string see `sprintf`, for non-numeric matrices `%s` should be used.
***Warning: The format string is passed down the OS's sprintf function, and incorrect formats can cause the latter to crash the R process. R does perform sanity checks on the format, but not all possible user errors on all platforms have been tested, and some might be terminal.***
## Modifying the row and column axes
As default the row axis is drawn as y-axis and the col axis is drawn as x-axis with row and column indices.
If the matrix has `rownames(x)` or `colnames(x)` then they will used. The same holds for the labels of the axes if `names(dimnames(x))`is not empty.
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(x, xlab="my x label", ylab="my y label")
# The HairEyeColor has its own names
tab <- apply(HairEyeColor,1:2, sum)
plot(tab)
```
For moving, e.g. the column axis to the top, use
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 5.1, 4.1)) # adapt margins
plot(x, axis.col=list(side=3, cex.axis=0.7), axis.row=list(cex.axis=0.7))
# or alternatively set cex.axis for all axes and use abbreviated positioning
plot(x, axis.col=3, cex.axis=0.7)
```
For not drawing any axes use
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(x, axis.col=NULL, axis.row=NULL, xlab='', ylab='')
```
## Show matrix entries
You can either use `digits` which changes the output format for all text. If you just want to change the output format for the key labels use `fmt.cell`, e.g.
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
# change all text output
plot(x, digits=4, text.cell=list(cex=0.5))
# of alternatively use the global parameter cex
plot(x, digits=4, cex=0.5)
# change just matrix entries (no plus sign)
plot(x, fmt.cell='%.2f')
```
## `NA` handling
Usually `NA` values in a matrix are drawn as white boxes which determined by the value of
the `na.col` parameter (default: white) and if the matrix entries shown by `NA
```{r fig.height=4, fig.width=4}
x <- matrix(c(NA, 1, 2, 3), ncol=2)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(x, na.col='black', fmt.cell='%.0f')
```
You may enforce with `na.print` no printing of `NA`s or using a replacement text
```{r fig.height=4, fig.width=4}
x <- matrix(c(NA, 1, 2, 3), ncol=2)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(x, na.col='black', fmt.cell='%.0f', na.print=FALSE)
plot(x, na.col='black', fmt.cell='%.0f', na.print='Missing')
```
With `na.cell` you suppress printing of matrix entries at all
```{r fig.height=4, fig.width=4}
x <- matrix(c(NA, 1, 2, 3), ncol=2)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(x, fmt.cell='%.0f', na.cell=FALSE)
```
## Automatic text color adjustment
It may happen that the text color and cell background color are [too near](https://en.wikipedia.org/wiki/Color_difference#Euclidean) which means you can not read the text anymore in a cell
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
# Never replace text color by black or white
plot(x, digits=2, text.cell=list(col="yellow", cex=0.75), max.col=-1)
```
By default the text color is replaced by black or white (which is [further away](https://en.wikipedia.org/wiki/Color_difference#Euclidean))
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(x, digits=2, text.cell=list(col="yellow", cex=0.75))
```
Just replace text color if colors are nearer then the default `max.col=70`
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
# In fewer cells the text color will be replaced by black
plot(x, digits=2, text.cell=list(col="yellow", cex=0.75), max.col=35)
```
or farer away then the default
```{r fig.height=4, fig.width=4}
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
# In more cells the text color will be replaced by black
plot(x, digits=2, text.cell=list(col="yellow", cex=0.75), max.col=140)
```
Of course, the best solution is to choose a good color scheme and a good text color ;)
## Information about drawn elements
The `plot` command returns invisibly a list of the elements drawn, a bit like `hist`. A `NULL` entry means the element has not been drawn. The data may be useful for adding own elements in the graphic.
```{r fig.height=4, fig.width=4}
# numeric matrix
x <- matrix(runif(35), ncol=5) # create a numeric matrix object
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
res <- plot(x)
```
Available are the parameters for
* `cell.polygon`, `cell.text`: the polygon and the text used to draw a matrix element,
* `key.polygon`, `key.axis`: the polygon and the axis used to draw a key element, and
* `plot`, `axis.col`, `axis.row`: the basic plot and the axes drawn.
```{r}
#####
names(res)
# parameters of polygon which was used to draw x[3,4]
res$cell.polygon[[3,4]]
#####
# parameters of text which was used for x[3,4]
res$cell.text[[3,4]] # NULL since no text was drawn
#####
# parameters of polygon which was used to draw the second key element
res$key.polygon[[2]]
```
#### Example: Add shading lines
```{r}
x <- matrix(runif(35), ncol=5) # create a numeric matrix object
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
res <- plot(x)
for (i in 1:length(res$cell.polygon)) {
args <- res$cell.polygon[[i]]
args$col <- NA # use no color
args$density <- 20*x[i] # density depends on matrix entries
args$angle <- 45
do.call("polygon", args)
}
```
#### Example: Adding images
Please note that the PNGs have a transparent background. It depends on the graphic device how the transparency is taken into account.
```{r}
x <- matrix(runif(35), ncol=5) # create a numeric matrix object
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
res <- plot(x)
#
library("png")
# PNGs are created from wikimedia commons images, CC0 by C. Koltzenburg
# https://commons.wikimedia.org/wiki/File:C.Koltzenburg_-_smiley-yes.xcf
# https://commons.wikimedia.org/wiki/File:C.Koltzenburg_-_smiley_no.xcf
happy <- readPNG(system.file('png', 'happy.png', package="plot.matrix"))
sad <- readPNG(system.file('png', 'sad.png', package="plot.matrix"))
for (i in 1:length(res$cell.polygon)) {
args <- res$cell.polygon[[i]]
if (x[i]>0.5) {
rasterImage(happy, args$x[1]+0.1, args$y[1]+0.1, args$x[3]-0.1, args$y[2]-0.1)
} else {
rasterImage(sad, args$x[1]+0.1, args$y[1]+0.1, args$x[3]-0.1, args$y[2]-0.1)
}
}
```
# Plotting special matrices
For some special matrices we have special plot routines:
* loadings of a factor analysis or principal component analysis: `plot.loadings`
* correlations: `plot.cor`
* associations: `plot.assoc`
* p values: `plot.pvalue`
All plot routines support the parameters
* `gray` and `grey` for gray scale image
* `reorder` for reordering rows (default: `reorder=TRUE`)
Note that matrix columns are only reordered if the column names are identical to the row names.
## Loadings matrix
In factor or principal component analysis you may want to view the loadings matrix. The S3 function `plot.loadings` allows to create a heatmap with loadings. It differs from plotting a matrix by
* the color key ranges from -1 to 1,
* the breaks are set to `c(-sqrt(c(1, 0.75, 0.5, 0.25, 0.16)), 0, sqrt(c(1, 0.75, 0.5, 0.25, 0.16)))`,
* the matrix rows, corresponding to the variables, are reordered (according to the breaks),
* the matrix entries are printed with two digits after the comma.
A typical threshold in factor analysis is an absolute loading greater equal 0.5; thus a factor "explains" 25% of the variance of a variable. Further thresholds are selected such that they explain 50% and 75% of the variable variance. Sometimes it might be useful to check whether there are loadings a little bit under 0.5, therefore another threshold of 0.4 is added.
All parameters described in **Modifying a plot** can be used in `plot.loadings` as well.
```{r fig.height=5, fig.width=5}
library('plot.matrix')
library('psych')
data(bfi.2)
fa <- fa(bfi.2, 5, rotate="varimax")
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(loadings(fa), cex=0.5)
```
### Gray scale
For using a gray color scheme add `gray=TRUE`or `grey=TRUE` to the call
```{r fig.height=5, fig.width=5}
library('plot.matrix')
library('psych')
data(bfi.2)
fa <- fa(bfi.2, 5, rotate="varimax")
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(loadings(fa), cex=0.5, gray=TRUE)
```
### No matrix entries
For not printing loading entries use the parameter `digits`:
```{r fig.height=5, fig.width=5}
library('plot.matrix')
library('psych')
data(bfi.2)
fa <- fa(bfi.2, 5, rotate="varimax")
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(loadings(fa), digits=NA)
```
### No reordering of rows
For not reordering the variables use the parameter `reorder`:
```{r fig.height=5, fig.width=5}
library('plot.matrix')
library('psych')
data(bfi.2)
fa <- fa(bfi.2, 5, rotate="varimax")
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(loadings(fa), reorder=FALSE, cex=0.5)
```
## Correlations and associations
The S3 function `plot.cor` and `plot.assoc` allow to create a heatmap with the coefficients. It differs from plotting a matrix by
* the color key ranges from -1 to 1 for correlations and 0 to 1 for associations,
* the breaks are set to reflect the effect sizes given by Cohen
* the matrix rows, corresponding to the variables, are reordered using `dist` and `hclust` with the defaults on the rows,
* the matrix entries are printed with two digits after the comma.
All parameters described in **Modifying a plot** can be used in `plot.assoc` or `plot.cor` as well.
```{r fig.height=5, fig.width=5}
library('plot.matrix')
data(Titanic.cramer)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(as.assoc(Titanic.cramer))
```
```{r fig.height=5, fig.width=5}
library('plot.matrix')
library('datasets')
c <- cor(airquality[,1:4], use="complete")
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(as.cor(c))
```
### Gray scale
For using a gray color scheme add `gray=TRUE`or `grey=TRUE` to the call
```{r fig.height=5, fig.width=5}
library('plot.matrix')
data(Titanic.cramer)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(as.assoc(Titanic.cramer), gray=TRUE)
```
### No matrix entries
For not printing loading entries use the parameter `digits`:
```{r fig.height=5, fig.width=5}
library('plot.matrix')
data(Titanic.cramer)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(as.assoc(Titanic.cramer), digits=NA)
```
### No reordering of rows
For not reordering the variables use the parameter `reorder`:
```{r fig.height=5, fig.width=5}
library('plot.matrix')
data(Titanic.cramer)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(as.assoc(Titanic.cramer), reorder=FALSE)
```
## P values
The S3 function `plot.pvalue` allows to create a heatmap from a matrix of p values. It differs from plotting a matrix by
* the color key ranges from 0 to 1
* the breaks are set to 0, 0.1, 0.05, 0.01, 0.001 and 1
* the matrix rows, corresponding to the variables, are reordered using `dist` and `hclust` with the defaults on the rows,
* the matrix entries are printed with three digits after the comma.
All parameters described in **Modifying a plot** can be used in `plot.pvalue` as well.
```{r fig.height=5, fig.width=5}
library('plot.matrix')
data(air.pvalue)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(as.pvalue(air.pvalue))
```
### Gray scale
For using a gray color scheme add `gray=TRUE`or `grey=TRUE` to the call
```{r fig.height=5, fig.width=5}
library('plot.matrix')
data(air.pvalue)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(as.pvalue(air.pvalue), gray=TRUE)
```
### No matrix entries
For not printing loading entries use the parameter `digits`:
```{r fig.height=5, fig.width=5}
library('plot.matrix')
data(air.pvalue)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(as.pvalue(air.pvalue), digits=NA)
```
### No reordering of rows
For not reordering the variables use the parameter `reorder`:
```{r fig.height=5, fig.width=5}
library('plot.matrix')
data(air.pvalue)
par(mar=c(5.1, 4.1, 4.1, 4.1)) # adapt margins
plot(as.pvalue(air.pvalue), reorder=FALSE)
```